A Multistage DC-DC Step-Up Self-Balanced and Magnetic Component-Free Converter for Photovoltaic Applications: Hardware Implementation
نویسندگان
چکیده
This article presents a self-balanced multistage DC-DC step-up converter for photovoltaic applications. The proposed converter topology is designed for unidirectional power transfer and provides a doable solution for photovoltaic applications where voltage is required to be stepped up without magnetic components (transformer-less and inductor-less). The output voltage obtained from renewable sources will be low and must be stepped up by using a DC-DC converter for photovoltaic applications. 2 K diodes and 2 K capacitors along with two semiconductor control switch are used in the K-stage proposed converter to obtain an output voltage which is (K + 1) times the input voltage. The conspicuous features of proposed topology are: (i) magnetic component free (transformer-less and inductor-less); (ii) continuous input current; (iii) low voltage rating semiconductor devices and capacitors; (iv) modularity; (v) easy to add a higher number of levels to increase voltage gain; (vi) only two control switches with alternating operation and simple control. The proposed converter is compared with recently described existing transformer-less and inductor-less power converters in term of voltage gain, number of devices and cost. The application of the proposed circuit is discussed in detail. The proposed converter has been designed with a rated power of 60 W, input voltage is 24 V, output voltage is 100 V and switching frequency is 100 kHz. The performance of the converter is verified through experimental and simulation results.
منابع مشابه
Multistage DC-DC Step-Up Self Balanced and Magnetic Component Free Converter for Photovoltaic Applications—Hardware Implementation
This article presents a self balanced multistage DC-DC step-up converter for photovoltaic applications. Proposed converter topology is designed for unidirectional power transfer and provides a doable solution for photovoltaic applications where voltage is required to be stepped up without magnetic components (Transformer-less and Inductor-less). The output voltage obtained from renewable source...
متن کاملDesign, Simulation and Hardware Implementation of Efficient Solar Power Converter with High Mpp Tracking Accuracy for Dc Microgrid Applications
This work includes a high step up voltage gain DC-DC converter for DC microgrid applications. The DC microgrid can be utilized for rural electrification, UPS support, Electronic lighting systems and Electrical vehicles. The whole system consists of a Photovoltaic panel (PV), High step up DC-DC converter with Maximum Power Point Tracking (MPPT) and DC microgrid. The entire system is optimized wi...
متن کاملNonlinear Control for Positive Output Super Lift Luo Converter in Stand Alone Photovoltaic System
This paper proposes a stand-alone photovoltaic (PV) system based on a DC-DC positive output super lift Luo (POSLL) converter. A conventional sliding mode control, a sliding mode controller using a simple sign function and a linear controller using proportional integrator (PI) are used for the control of the PV panel voltage and POSLL converter inductor current and these methods are compared tog...
متن کاملAn Interleaved Configuration of Modified KY Converter with High Conversion Ratio for Renewable Energy Applications; Design, Analysis and Implementation
In this paper, a new high efficiency, high step-up, non-isolated, interleaved DC-DC converter for renewable energy applications is presented. In the suggested topology, two modified step-up KY converters are interleaved to obtain a high conversion ratio without the use of coupled inductors. In comparison with the conventional interleaved DC-DC converters such as boost, buck-boost, SEPIC, ZETA a...
متن کاملAn Efficient High-Step-Up Soft-Switching Boost Converter for Photovoltaic Application
In this paper an efficient high step-up converter with a coupled- inductor with soft- switching operation is presented. The proposed topology includes a coupled-inductor boost converter for raising the voltage gain. Moreover, a simple auxiliary resonant circuit composed of an auxiliary switch, a clamping diode and a resonant tank (inductor, capacitor), is adopted in this paper. The coupled-indu...
متن کامل